

Stochastics of Radioactive Decay

Servo S. H. Kasi

Aalto University, Laboratory of Radiation Physics, Box 15100, FI-00076 Aalto

Fundamental distribution in the stochastics of radioactive decay is the binomial distribution. The Poisson distribution is only valid when the measuring time $T \ll t_{1/2}$, the half life. The parameters of binomial distribution are the number of nuclides N when $t = 0$, and the ratio of the half life and measuring time T or the disintegration probability p . We know $\frac{dN}{dt} = -\lambda$ and $n = N(1-\exp(-\lambda T))$ is the count number measured in time T . Is there really $p = 1 - \exp(-\lambda T)$? $\lambda = \ln(2)/t_{1/2}$. The parameter of Poisson distribution is the mean value n . The basic mathematics I have presented in [1].

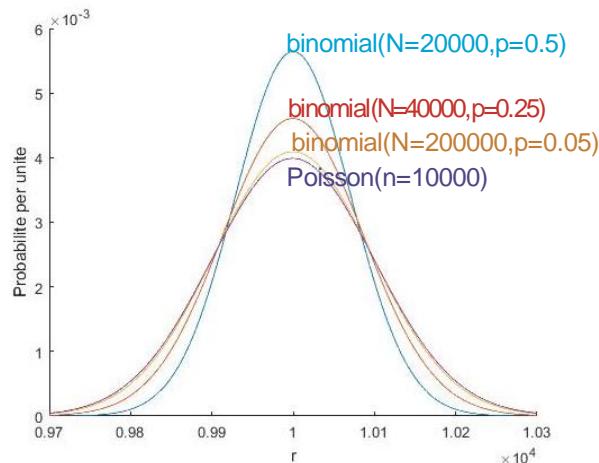


Fig. 1. Binomial and Poisson statistics. Distributions for the mean value $n = Np = 10000$. r is the random number of disintegrations in the time T . $p = 1 - \exp(-\lambda T)$.

The binomial distributions have been calculated for ^{14}C and ^{40}K as well as the corresponding Poisson distributions for certain T .

The ideal detector counts all the disintegrations of a group of atoms of a very short life nuclide without error.

In real measurements you must consider the background, R_b its counting rate. You must stop counting surely not later than the counting rate $R(t) = 2R_b$.

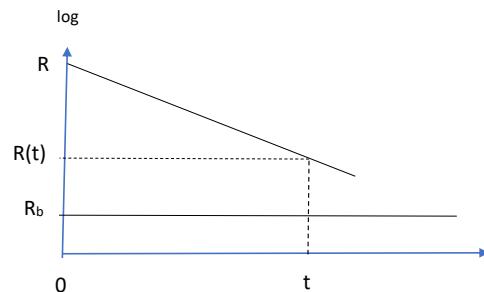


Fig. 2. A schema for seeking optimal counting time.

Keywords: radioactivity, disintegration statistics, background, error

[1] S.S.H. Kasi, "[Error of number of radioactive disintegrations](#)", Journal of Physical Science and Application 4(3), 2014), 193.