

Mass attenuation coefficient

Servo Kasi, Aalto University, Finland

We all know the so-called “linear” attenuation coefficient. Here I set the symbol λ for that. Let x to be the symbol for the thickness of homogeneous layers, where the beam transmits perpendicular with the intensity I_0 . After the layer x we have the intensity

$$I = I_0 \exp(-\lambda x). \quad (1)$$

This exponentially decreasing function of attenuation has first found by Pierre Bouguer (1698–1758) [1]. In his figure [1, Fig. 2] we can numerate the layers $i = 1, 2, \dots$. He found $\log I_{i+1} - \log I_i = c(x_i - x_{i-1})$, which agrees with (1), c is a constant. The logarithmus of intensity is a linear function of the thickness of the transmitted layer.

The λ is not the basic quantity of attenuation. The basic is the mass attenuation. Let us set the symbol μ for the mass attenuation coefficient. This μ is important in practice.

Let us suppose the beam of the intensity I has the cross area A . It goes through a layer dx with density ρ (here of one-element matter), which has the atomic mass M and cross section σ . There the change of intensity is

$$dI = -I \frac{\rho}{M} N dA \sigma = -\mu \rho I dx. \quad (2)$$

N is Avogardo’s number. $\frac{\rho}{M}$ is the number of moles in volume unite. $\frac{\rho}{M} N$ is the number of atoms in volume unite. Then $\frac{\rho}{M} N A dx$ is the number of atoms in the differential volume $dV = Adx$. The

cross section σ is the interaction (reaction or scattering) area for an atom. The numerator in the middle of (2) is the sum of the areas where the interaction occurs. Its relation to A is the probability of the interaction.

$$\mu = \frac{N\sigma}{M} \quad (3)$$

is the mass attenuation coefficient. It is an important radiation quantity.

For the molecule, which has n elements, an element k times, we have

$$\mu = N \sum_{i=1}^n \frac{k_i \sigma_i}{M_i} \quad (4)$$

μ can also be written for a mixture of elements and molecules. For both σ and μ of photons NIST has [tabulation](#) [2]. There the mass attenuation coefficient μ is in the unit cm^2/g .

In neutron physics the mass attenuation coefficient is called the macroscopic cross section [3]. The cross section σ then you find in the [tabulation](#) [4].

The integration of (2) over a homogenous layer x gives the intensity

$$I = I_0 \exp(-\mu \rho x), \quad (5)$$

when I_0 is the intensity before the layer.

Gardner and Ely [5] use the symbol μ as in (5) for the attenuation.

In the XIV International Symposium on Radiation Physics, 2018 in Cordoba in Argentina, the discrepancy about symbols of attenuation coefficients still was alive. In the encyclopaedia [6] the different μ 's are discussed.

If we have n homogeneous layers then

$$I = I_0 \exp\left(-\sum_{i=1}^n \mu_i \rho_i x_i\right), \quad (6)$$

and if the density varies in x -direction, then

$$I = I_0 \exp\left(-\mu \int_0^x \rho(x) dx\right). \quad (7)$$

But when x is large then build-up considerations are needed, [7] for gamma photons.

We have $\lambda = \mu\rho$ as the relation between linear attenuation coefficient and mass attenuation coefficient in homogeneous matter with the density ρ .

When one determines λ , then also μ and its accuracy should be determined.

I think (1) should be called the absorption law of Bouguer.

References

- [1] Leif Gerward: The Bouguer-Lambert-Beer Absorption Law, IRPS Bulletin, [v 21 no 1 Mar 2007](#).
- [2] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, and K. Olsen: [XCOM: Photon Cross Sections Database](#), NIST Standard Reference Database 8 (XGAM), Last Update to Data Content: November 2010.
- [3] K. H. Beckurts and K. Wirtz: Neutron physics, Springer-Verlag, 1964.
- [4] Special Issue on Nuclear Reaction Data (eds. Pavel Obložinský, Boris Pritychenko), [Nuclear Data Sheets 148](#), 1-420, February 2018.
- [5] R. P. Gardner and R. L. Ely, Jr.: Radioisotope measurement applications in engineering, Reinhold Publishing Corporation, 1967.
- [6] U. Fano, L. V. Spencer and M. J. Berger: Penetration and diffusion of X rays, Encyclopedia of Physics PH XXXVIII/2, Neutrons and related gamma ray problems, 660-817, Springer Verlag, 1959.
- [7] O. I. Leipunskii, B.V. Novoshilov and V. N. Sakharov: The propagation of gamma quanta in matter, Pergamon Press, 1965, translated (Prasenjit Basu) from *Распространение гамма-квантов в веществе*, Fizmatgiz, 1960.