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Nuclear disintegration distribution is basically binomial (not Poisson). However, for the
binomial distribution the number of nuclides must be known. For short live cases it has been
shown that the distribution becomes sharper when the measuring time increases. The
accuracy of measurements is considered.

The influence of the background radiation is discussed. A condition is derived for stopping
the counting,
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INTRODUCTION

We consider the distribution of radioactive disintegrations. In the radioactive measuring process the
distribution of the measured counts can be considerably different from the distribution of

disintegrations. The count distribution and the latter are similar in the case of the perfect (47) detector.
The articles [1,2] and this discuss only the distribution of disintegration number.

We consider the well-known equation
n=N@—-exp(—4T)),

for the number n of disintegrations, where N is the number of identical radioactive nuclides, T is the
measuring time and 4 = In(2)/ty, is the disintegration constant, and the t., is the half life of the radiation.

DISTRIBUTION OF RADIOACTIVE DISINTEGRATIONS

Set you have N identical nuclides of a radioactive element at the time moment zero. First we
consider the disintegration of one nuclide. Fig. 1 is a presentation of that. Its stochastic variable is v,
v € {0,1}. The event of integration (v = 1) has the probability P(1) = p =1-exp(-AT) and no
disintegration event has the probsbility P(0) = q = 1 — p = exp(- AT). The stochastic process of
disintegration of one nuclide is a special case of binomial distributions. Its own name is Bernoulli
distribution.

Let us still look Fig. 1 for the disintegration of one nuclide. In this case the expetation (or the mean
value) for our stocastic variable v is

E(w=0q+1p=p
and the variance

Var(v) = ((0-E(V))* g+ (- E(v)*p=p°q+(1-p)*p=pa.

N
For the disintegration of N nuclides we take the stochastic variable r = Z v, summing over all N
1

nuclides. r € {O,N} and at the certain value r it has the probability P(r), i.e.
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Fig. 1. Stochastic variable v of one nuclide, binomial distribution of one nuclide or

Bernoulli distribution.
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For counting the expectetion E(r) we use the mathematical theorem:

The expectation of the sum of stochastic variables is the sum of the expectations of the variables.
N N

Then E(N=EQ_v;))=)_ E(v;)=Np=n.
i=1 i=1

For calculation of the variance of r we use the theorem

The variance of the sum of independent stochastic variables is the sum of the variances of the
variables.

Then (when the nuclides are independent).
N N
Var(r) =Var()_v;) = > Var(v;) = Npq = nexp(-AT).
i=1l i=1

The standard deviation or error is now

AN =~/n exp(—AT /2). (1)

USE OF BINOMIAL DISTRIBUTION

For calculation binomial distribution the value of N, the number of nuclides, is needed. Note: it
must be an integer. As an example we consider potassium.

Example 1. The radioactive isotope “°K has the half time t,, = 1.26 10° It emits the photon 1.460
MeV in 10.72 % emissions. Take a sample of 10 g rock, Make 1 h measurement. Then N = 3.96



10%°. We find n = 2483 emitted photons per 1 h, and (Eq. 1) An =49.8 and An/n = 2.0 %. The
distribution is in Fig. 2.
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Fig. 2. The distribution of Example 1. This result can be calculated with binomial and
with its approximation (T << 1) Poisson stochastic model.

In the table 1 the uppermost distribution can be as well calculated by using Poisson model for n =
10 000. In the lower cases N is calculated by using N = n/p, and when necessary the result is given
as the closest integer.

The “curves” in Fig. 2 and in the figures of Table 1 illustrate discrete values of P(r). They obey

iP(r) =1(binomially)

r=0
Y P(r) =1 (in the Poisson model).
r=0
BACKGROUND CONSIDERATION
In radiation measurement we can follow the counting rate

R(t) = % = Apexp(—At) = R, exp(—At).

For short live radiation we can set a condition
An=RT, (2)

to stop the counting, before the background disturbs. Anyou find from (1). Ry is the background and
T is the time when in Fig. 3 the counting rate



Table 1. Stochastic distributions P(r) for different T. n = 10 000.
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is met, Eq. (3) has been solved from (2). R(T) increases with T, though n is increasing.
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Fig. 3. Counting rate R for a short-lived decay of radioactivity. Ry is the counting
rate of background. T is time (Eqg. 3) when stop the counting.

CONCLUSION

This paper concerns the emission stochastics of decaying radiation. Each emitting particle (also
photon) has similar process to be counted. That side of measurement is permanent. However, when
the counting rate is diminishing, then on the emitter side has a change. I think then the Rainwater-Wu
[3] idea of binomial model is too simple.
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